These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In silico construction of HK2-VDAC1 complex and investigating the HK2 binding-induced molecular gating mechanism of VDAC1. Author: Zhang D, Yip YM, Li L. Journal: Mitochondrion; 2016 Sep; 30():222-8. PubMed ID: 27544294. Abstract: Hexokinase 2 (HK2) binds to Voltage-Dependent Anion Channel 1 (VDAC1) on mitochondrial outer membrane (MOM) to facilitate a preferential access of ATP to HK2 for glycolysis, in order to maintain a constant energy source for cell proliferation in cancer especially. While previous studies have discovered that the VDAC1 N-terminal helix is responsible for regulating molecules from within mitochondria to cytoplasm, the molecular mechanism of how HK2 is able to regulate the ATP access remains elusive. We hereby propose a model for the HK2-VDAC1 association. The model is then subjected to molecular dynamics (MD) simulations, where we probe the effect of HK2 binding on the mobility of the VDAC1 N-terminal helix. Results from the simulations show that HK2 binding restricts the movement of the VDAC1 N-terminal helix. As a result, VDAC1 is kept in the open state most of the time and probably allows a constant supply of ATP to HK2 for glycolysis.[Abstract] [Full Text] [Related] [New Search]