These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: De Novo Mutations in SON Disrupt RNA Splicing of Genes Essential for Brain Development and Metabolism, Causing an Intellectual-Disability Syndrome.
    Author: Kim JH, Shinde DN, Reijnders MRF, Hauser NS, Belmonte RL, Wilson GR, Bosch DGM, Bubulya PA, Shashi V, Petrovski S, Stone JK, Park EY, Veltman JA, Sinnema M, Stumpel CTRM, Draaisma JM, Nicolai J, University of Washington Center for Mendelian Genomics, Yntema HG, Lindstrom K, de Vries BBA, Jewett T, Santoro SL, Vogt J, Deciphering Developmental Disorders StudyWellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK., Bachman KK, Seeley AH, Krokosky A, Turner C, Rohena L, Hempel M, Kortüm F, Lessel D, Neu A, Strom TM, Wieczorek D, Bramswig N, Laccone FA, Behunova J, Rehder H, Gordon CT, Rio M, Romana S, Tang S, El-Khechen D, Cho MT, McWalter K, Douglas G, Baskin B, Begtrup A, Funari T, Schoch K, Stegmann APA, Stevens SJC, Zhang DE, Traver D, Yao X, MacArthur DG, Brunner HG, Mancini GM, Myers RM, Owen LB, Lim ST, Stachura DL, Vissers LELM, Ahn EYE.
    Journal: Am J Hum Genet; 2016 Sep 01; 99(3):711-719. PubMed ID: 27545680.
    Abstract:
    The overall understanding of the molecular etiologies of intellectual disability (ID) and developmental delay (DD) is increasing as next-generation sequencing technologies identify genetic variants in individuals with such disorders. However, detailed analyses conclusively confirming these variants, as well as the underlying molecular mechanisms explaining the diseases, are often lacking. Here, we report on an ID syndrome caused by de novo heterozygous loss-of-function (LoF) mutations in SON. The syndrome is characterized by ID and/or DD, malformations of the cerebral cortex, epilepsy, vision problems, musculoskeletal abnormalities, and congenital malformations. Knockdown of son in zebrafish resulted in severe malformation of the spine, brain, and eyes. Importantly, analyses of RNA from affected individuals revealed that genes critical for neuronal migration and cortex organization (TUBG1, FLNA, PNKP, WDR62, PSMD3, and HDAC6) and metabolism (PCK2, PFKL, IDH2, ACY1, and ADA) are significantly downregulated because of the accumulation of mis-spliced transcripts resulting from erroneous SON-mediated RNA splicing. Our data highlight SON as a master regulator governing neurodevelopment and demonstrate the importance of SON-mediated RNA splicing in human development.
    [Abstract] [Full Text] [Related] [New Search]