These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Suppression of StarD7 promotes endoplasmic reticulum stress and induces ROS production.
    Author: Flores-Martín J, Reyna L, Ridano ME, Panzetta-Dutari GM, Genti-Raimondi S.
    Journal: Free Radic Biol Med; 2016 Oct; 99():286-295. PubMed ID: 27554972.
    Abstract:
    StarD7 is an intracellular lipid transport protein identified as up-regulated in the choriocarcinoma JEG-3 cell line. StarD7 facilitates the delivery of phosphatidylcholine (PC) to the mitochondria, and StarD7 knockdown causes a reduction in phospholipid synthesis. Since inhibition of PC synthesis may lead to endoplasmic reticulum (ER) stress we hypothesized that StarD7 may be involved in maintaining cell homeostasis. Here, we examined the effect of StarD7 silencing on ER stress response and on the levels of reactive oxygen species (ROS) in the human hepatoma cell line HepG2. StarD7 knockdown induced alterations in mitochondria and ER morphology. These changes were accompanied with an ER stress response as determined by increased expression of inositol-requiring enzyme 1α (IRE1α), calnexin, glucose regulated protein 78/immunoglobulin heavy chain-binding protein (Grp78/BiP), protein kinase-like ER kinase (PERK) as well as the phosphorylated eukaryotic translation initiation factor 2, subunit 1α (p-eIF2α). Additionally, a downregulation of the tumor suppressor p53 by a degradation mechanism was observed in StarD7 siRNA cells. Furthermore, StarD7 silencing induced ROS generation and reduced cell viability after H2O2 exposure. Decreased expression of StarD7 was associated to increased levels of the heme oxygenase-1 (HO-1) and catalase enzymes as well as in catalase enzymatic activity. Finally, no changes in levels of autophagy and apoptosis markers were observed in StarD7 siRNA treated cells respect to control cells. Taken together, these results indicate that StarD7 contributes to modulate cellular redox homeostasis.
    [Abstract] [Full Text] [Related] [New Search]