These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fluorescence studies on binding of amphiphilic drugs to isolated lamellar bodies: relevance to phospholipidosis. Author: Joshi UM, Rao P, Kodavanti S, Lockard VG, Mehendale HM. Journal: Biochim Biophys Acta; 1989 Aug 22; 1004(3):309-20. PubMed ID: 2758025. Abstract: Lysosomal phospholipid storage disorder in lung tissue was observed during chronic treatment with amphiphilic amine drugs. The prevailing and widely accepted mechanism of phospholipidosis is that amphiphilic drugs bind to phospholipids and make the phospholipids unsuitable substrates for the action of phospholipases. We investigated hydrophobic and hydrophilic binding of fifteen drugs to the phospholipid storage organelle, lung lamellar bodies, isolated from male Sprague-Dawley rats. Hydrophobic interactions were studied using 1,6-diphenyl-1,3,5-hexatriene as a fluorescent probe and hydrophilic binding was studied using 1-anilino-8-naphthalene sulfonate as a fluorescent probe. The binding parameters were calculated using Scatchard equations. Of the fifteen drugs used, nine drugs bound to the hydrophobic moiety of lamellar bodies. The order of binding capacities was promethazine greater than chloramphenicol greater than amiodarone = desethylamiodarone greater than promazine greater than chlorpromazine greater than trimipramine greater than propranolol greater than imipramine much greater than chlorphentermine, phentermine, chloroquine, chlorimipramine, cyclizine and chlorcyclizine. Two binding affinities were calculated for all the bound drugs. Binding affinities to hydrophilic sites of lamellar bodies were calculated in terms of emission coefficients for 1-anilino-8-naphthalene sulfonate in the presence of drugs. Hydrophilic binding was in the order chlorpromazine greater than chlorimipramine greater than promazine greater than trimipramine greater than imipramine greater than chlorcyclizine greater than propranolol greater than promethazine greater than chlorphentermine greater than cyclizine greater than phentermine greater than chloroquine much greater than chloramphenicol, amiodarone and desethylamiodarone. The binding affinities of chlorinated analogs were stronger to hydrophilic sites when compared to the parent compound. Amiodarone, which is known to induce pulmonary phospholipidosis and its major non-polar metabolite, desethylamiodarone, bound strongly to lamellar bodies. These two drugs also inhibit phospholipases in vitro. The drugs with weak phospholipidosis-inducing capacity and extensive in vivo metabolism, namely, imipramine, chlorpromazine and promazine, also bound strongly to lamellar bodies with hydrophilic as well as hydrophobic interactions. On the other hand, chloroquine, which is known to induce phospholipidosis and to inhibit phospholipases, did not bind to lamellar bodies. Two major conclusions could be drawn from this study: one is that the drug interactions with isolated lamellar bodies could be studied using membrane fluorescence probes, 1,6-diphenyl-1,3,5-hexatriene and 1-anilino-8-naphthalene sulfonate; second is that the amphiphilic drugs bind to lamellar bodies, as reported for phospholipid vesicles, and the binding of drugs to lamellar bodies could be correlated with their phospholipidosis-inducing capacity only if[Abstract] [Full Text] [Related] [New Search]