These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sensitivity of soil carbon fractions and their specific stabilization mechanisms to extreme soil warming in a subarctic grassland. Author: Poeplau C, Kätterer T, Leblans NI, Sigurdsson BD. Journal: Glob Chang Biol; 2017 Mar; 23(3):1316-1327. PubMed ID: 27591579. Abstract: Terrestrial carbon cycle feedbacks to global warming are major uncertainties in climate models. For in-depth understanding of changes in soil organic carbon (SOC) after soil warming, long-term responses of SOC stabilization mechanisms such as aggregation, organo-mineral interactions and chemical recalcitrance need to be addressed. This study investigated the effect of 6 years of geothermal soil warming on different SOC fractions in an unmanaged grassland in Iceland. Along an extreme warming gradient of +0 to ~+40 °C, we isolated five fractions of SOC that varied conceptually in turnover rate from active to passive in the following order: particulate organic matter (POM), dissolved organic carbon (DOC), SOC in sand and stable aggregates (SA), SOC in silt and clay (SC-rSOC) and resistant SOC (rSOC). Soil warming of 0.6 °C increased bulk SOC by 22 ± 43% (0-10 cm soil layer) and 27 ± 54% (20-30 cm), while further warming led to exponential SOC depletion of up to 79 ± 14% (0-10 cm) and 74 ± 8% (20-30) in the most warmed plots (~+40 °C). Only the SA fraction was more sensitive than the bulk soil, with 93 ± 6% (0-10 cm) and 86 ± 13% (20-30 cm) SOC losses and the highest relative enrichment in 13 C as an indicator for the degree of decomposition (+1.6 ± 1.5‰ in 0-10 cm and +1.3 ± 0.8‰ in 20-30 cm). The SA fraction mass also declined along the warming gradient, while the SC fraction mass increased. This was explained by deactivation of aggregate-binding mechanisms. There was no difference between the responses of SC-rSOC (slow-cycling) and rSOC (passive) to warming, and 13 C enrichment in rSOC was equal to that in bulk soil. We concluded that the sensitivity of SOC to warming was not a function of age or chemical recalcitrance, but triggered by changes in biophysical stabilization mechanisms, such as aggregation.[Abstract] [Full Text] [Related] [New Search]