These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dorsal hippocampus cannabinoid type 1 receptors modulate the expression of contextual fear conditioning in rats: Involvement of local glutamatergic/nitrergic and GABAergic neurotransmissions. Author: Spiacci GB, Antero LS, Reis DG, Lisboa SF, Resstel LB. Journal: Eur Neuropsychopharmacol; 2016 Oct; 26(10):1579-89. PubMed ID: 27591981. Abstract: The cannabinoid receptor type 1 (CB1) is highly expressed in the dorsal portion of hippocampus - a brain region that has been involved in the control of conditioned emotional response (CER) in the contextual fear conditioning (CFC) model. These responses are characterized by increased freezing behavior and autonomic parameters. Moreover, CB1 receptors activation negatively modulate the release of several neurotransmitters, including glutamate and GABA, which also have been related to modulation of CER. Therefore, our aim was to investigate the involvement of CB1 receptors in the dorsal hippocampus on CER expression. Independent groups of male Wistar rats submitted to the contextual fear conditioning received bilateral intra-hippocampal injections (500 nL/side) of the following drugs or vehicle before re-exposure to the aversive context: AM251 (CB1 antagonist; 0.1, 0.3 and 1nmol); AP7 (NMDA antagonist; 1nmol)+AM251 (0.3nmol); NPLA (0.01nmol; nNOS inhibitor)+AM251 (0.3nmol); Bicuculline (1.3pmol; GABAA antagonist)+AM251 (0.1 and 1nmol). In the present paper, AM251 (0.3nmol) increased CER, while this response was prevented by both AP7 and NPLA pretreatment. After pretreatment with Bicuculline, the lower and higher ineffective doses of AM251 were able to increase the CER, supporting the balance between GABAergic and glutamatergic mechanisms controlling this response. Our results suggest that increased CER evoked by CB1 blockade in the dorsal hippocampus depends on NMDA receptor activation and NO formation. Moreover, a fine-tune control promoted by GABAergic and glutamatergic mechanisms in this brain area modulate the CER after CB1 blockade.[Abstract] [Full Text] [Related] [New Search]