These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular characterization and nutritional regulation of carnitine palmitoyltransferase (CPT) family in grass carp (Ctenopharyngodon idellus).
    Author: Shi XC, Sun J, Yang Z, Li XX, Ji H, Li Y, Chang ZG, Du ZY, Chen LQ.
    Journal: Comp Biochem Physiol B Biochem Mol Biol; 2017 Jan; 203():11-19. PubMed ID: 27593560.
    Abstract:
    The carnitine palmitoyltransferase (CPT) gene family plays an essential role in fatty acid β-oxidation in the mitochondrion. We identified six isoforms of the CPT family in grass carp and obtained their complete coding sequences (CDS). The isoforms included CPT 1α1a, CPT 1α1b, CPT 1α2a, CPT 1α2b, CPT 1β, and CPT 2, which may have resulted from fish-specific genome duplication. Sequence analysis showed that the predicted protein structure was different among the CPT gene family members in grass carp. The N-terminal domain of grass carp CPT 1α1a, CPT 1α1b, CPT 1α2a, and CPT 1α2b contained two transmembrane region domains and two acyltransferase choActase domains that exist in human and mouse proteins also; however, only one acyltransferase choActase domain was found in grass carp CPT 1β. The grass carp CPT 2 had two acyltransferase choActase domains. The grass carp CPT 1α1b, CPT 1α2a, CPT 1α2b, and CPT 1β contained 18 coding exons, while CPT 1α1a and CPT 2 consisted of 17 coding exons and 5 coding exons, respectively. The mRNA of the six CPT isoforms was expressed in a wide range of tissues, but the mRNA abundance of each CPT showed tissue-dependent expression patterns. The expression of CPT 1α1a, CPT 1α2a, and CPT 1β at 48h post-feeding was significantly increased in the liver (P<0.01, P<0.05, and P<0.01, respectively). The diverse responses of multiple isoforms in the liver during nutritional limitation suggest that they may play different roles in fatty acid β-oxidation.
    [Abstract] [Full Text] [Related] [New Search]