These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pneumococcal DnaJ modulates dendritic cell-mediated Th1 and Th17 immune responses through Toll-like receptor 4 signaling pathway. Author: Wu Y, Cui J, Zhang X, Gao S, Ma F, Yao H, Sun X, He Y, Yin Y, Xu W. Journal: Immunobiology; 2017 Feb; 222(2):384-393. PubMed ID: 27594384. Abstract: Pneumococcal DnaJ was recently shown to be a potential protein vaccine antigen that induces strong Th1 and Th17 immune response against streptococcus pneumoniae infection in mice. However, how DnaJ mediates T cell immune response against S. pneumoniae infection has not been addressed. Here, we investigate whether DnaJ contributes to the development of T cell immunity through the activation of bone marrow-derived dendritic cells (BMDCs). We found that endotoxin-free recombinant DnaJ (rDnaJ) induced activation and maturation of BMDCs via recognition of Toll-like receptor 4 (TLR4) and activation of MAPKs, NF-κB and PI3K-Akt pathways. rDnaJ-treated BMDCs effectively stimulated naïve CD4+ T cells to secrete IFN-γ and IL-17A. Splenocytes from mice that were adoptively transferred with rDnaJ-pulsed BMDCs secreted higher levels of IFN-γ and IL-17A compared with those that received PBS-activated BMDCs. Splenocytes from TLR4-/- mice immunized with rDnaJ produced lower levels of IFN-γ and IL-17A compared with those from wild type mice. Our findings indicate that DnaJ can induce Th1 and Th17 immune responses against S. pneumoniae through activation of BMDCs in a TLR4-dependent manner.[Abstract] [Full Text] [Related] [New Search]