These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A library of oligosaccharide probes (neoglycolipids) from N-glycosylated proteins reveals that conglutinin binds to certain complex-type as well as high mannose-type oligosaccharide chains.
    Author: Mizuochi T, Loveless RW, Lawson AM, Chai W, Lachmann PJ, Childs RA, Thiel S, Feizi T.
    Journal: J Biol Chem; 1989 Aug 15; 264(23):13834-9. PubMed ID: 2760047.
    Abstract:
    This report describes the preparation of a library of oligosaccharide probes (neoglycolipids) from N-glycosylated proteins, characterization of the probes by liquid secondary ion mass spectrometry, and investigation of their reactions with 125I-labeled bovine serum conglutinin by chromatogram binding assays. The results, together with additional binding studies using neoglycolipids derived from purified complex type bi-, tri-, and tetraantennary oligosaccharides from urine, or their glycosidase-treated products, have shown that the combining specificity of conglutinin includes structures not only on high mannose-type oligosaccharides but also on hybrid- and complex-type chains. With high mannose-type oligosaccharides there is increased reactivity from the Man5 to the Man8 structures, indicating a preference for the terminal Man alpha 1-2 sequence. With complex- and hybrid-type oligosaccharides, the requirements for binding are the presence of nonreducing terminal N-acetylglucosamine or mannose residues, but the presence of a bisecting N-acetylglucosamine residue may inhibit binding. From these results it is deduced that the reactivity of conglutinin with the complement glycopeptide iC3b rather than the intact glycoprotein C3 is due to the oligosaccharide accessibility rendered by proteolysis in the complement cascade.
    [Abstract] [Full Text] [Related] [New Search]