These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Structural insight into the E. coli HigBA complex.
    Author: Yang J, Zhou K, Liu P, Dong Y, Gao Z, Zhang J, Liu Q.
    Journal: Biochem Biophys Res Commun; 2016 Sep 30; 478(4):1521-7. PubMed ID: 27601326.
    Abstract:
    The toxin-antitoxin system is ubiquitously existed in bacteria and archaea, performing a wide variety of functions modulating cell fitness in response to environmental cues. In this report, we solved the crystal structure of the toxin-antitoxin HigBA complex from E. coli K-12 to 2.7 Å resolution. The crystal structure of the HigBA complex displays a hetero-tetramer (HigBA)2 form comprised by two HigB and two HigA subunits. Each toxin HigB resumes a microbial RNase T1 fold, characteristic of a three antiparallel β-sheet core shielded by a few α-helices at either side. Each antitoxin HigA composed of all α-helices resembles a "C"-shaped clamp nicely encompassing a HigB in the (HigBA)2 complex. Two HigA monomers dimerize at their N-terminal domain. We showed that HigA helix α1 was essential for HigA dimerization and the hetero-tetramer (HigBA)2 formation, but not for a hetero-dimeric HigBA formation. HigA dimerization mediated by helix α1 was dispensable for DNA-binding, as a heterodimeric HigBA complex still bound to the higBA operator in vitro. The HigA C-terminal domain with a helix-turn-helix fold was essential for DNA binding. We also defined two palindromes in higBA operator specifically recognized by HigA and HigBA in vitro.
    [Abstract] [Full Text] [Related] [New Search]