These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Relaxation dynamics and thermophysical properties of vegetable oils using time-domain reflectometry. Author: Sonkamble AA, Sonsale RP, Kanshette MS, Kabara KB, Wananje KH, Kumbharkhane AC, Sarode AV. Journal: Eur Biophys J; 2017 Apr; 46(3):283-291. PubMed ID: 27604548. Abstract: Dielectric relaxation studies of vegetable oils are important for insights into their hydrogen bonding and intermolecular dynamics. The dielectric relaxation and thermo physical properties of triglycerides present in some vegetable oils have been measured over the frequency range of 10 MHz to 7 GHz in the temperature region 25 to 10 °C using a time-domain reflectometry approach. The frequency and temperature dependence of dielectric constants and dielectric loss factors were determined for coconut, peanut, soya bean, sunflower, palm, and olive oils. The dielectric permittivity spectra for each of the studied vegetable oils are explained using the Debye model with their complex dielectric permittivity analyzed using the Havriliak-Negami equation. The dielectric parameters static permittivity (ε 0), high-frequency limiting static permittivity (ε ∞), average relaxation time (τ 0), and thermodynamic parameters such as free energy (∆F τ), enthalpy (∆H τ), and entropy of activation (∆S τ) were also measured. Calculation and analysis of these thermodynamic parameters agrees with the determined dielectric parameters, giving insights into the temperature dependence of the molecular dynamics of these systems.[Abstract] [Full Text] [Related] [New Search]