These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Replicative Bypass of O2-Alkylthymidine Lesions in Vitro. Author: Williams NL, Wang P, Wang Y. Journal: Chem Res Toxicol; 2016 Oct 17; 29(10):1755-1761. PubMed ID: 27611246. Abstract: DNA alkylation represents a major type of DNA damage and is generally unavoidable due to ubiquitous exposure to various exogenous and endogenous sources of alkylating agents. Among the alkylated DNA lesions, O2-alkylthymidines (O2-alkyldT) are known to be persistent and poorly repaired in mammalian systems and have been shown to accumulate in the esophagus, lung, and liver tissue of rats treated with tobacco-specific N-nitrosamines, i.e., 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN). In this study, we assessed the replicative bypass of a comprehensive set of O2-alkyldT lesions, with the alkyl group being a Me, Et, nPr, iPr, nBu, iBu, or sBu, in template DNA by conducting primer extension assays with the use of major translesion synthesis DNA polymerases. The results showed that human Pol η and, to a lesser degree, human Pol κ, but not human polymerase ι or yeast polymerase ζ, were capable of bypassing all O2-alkyldT lesions and extending the primer to generate full-length replication products. Data from steady-state kinetic measurements showed that human Pol η exhibited high frequencies of misincorporation of dCMP opposite those O2-alkyldT lesions bearing a longer straight-chain alkyl group. However, the nucleotide misincorporation opposite branched-chain lesions was not selective, with dCMP, dGMP, and dTMP being inserted at similar efficiencies, though the total frequencies of nucleotide misincorporation opposite the branched-chain lesions differed and followed the order of O2-iPrdT > O2-iBudT > O2-sBudT. Together, the results from the present study provided important knowledge about the effects of the length and structure of the alkyl group in the O2-alkyldT lesions on the fidelity and efficiency of DNA replication mediated by human Pol η.[Abstract] [Full Text] [Related] [New Search]