These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Removal of nitrate and phosphate using chitosan/Al2O3/Fe3O4 composite nanofibrous adsorbent: Comparison with chitosan/Al2O3/Fe3O4 beads.
    Author: Bozorgpour F, Ramandi HF, Jafari P, Samadi S, Yazd SS, Aliabadi M.
    Journal: Int J Biol Macromol; 2016 Dec; 93(Pt A):557-565. PubMed ID: 27612644.
    Abstract:
    In the present study the chitosan/Al2O3/Fe3O4 composite nanofibrous adsorbent was prepared by electrospinning process and its application for the removal of nitrate and phosphate were compared with chitosan/Al2O3/Fe3O4 composite bead adsorbent. The influence of Al2O3/Fe3O4 composite content, pH, contact time, nitrate and phosphate initial concentrations and temperature on the nitrate and phosphate sorption using synthesized bead and nanofibrous adsorbents was investigated in a single system. The reusability of chitosan/Al2O3/Fe3O4 composite beads and nanofibers after five sorption-desorption cycles were carried out. The Box-Behnken design was used to investigate the interaction effects of adsorbent dosage, nitrate and phosphate initial concentrations on the nitrate and phosphate removal efficiency. The pseudo-second-order kinetic model and known Freundlich and Langmuir isotherm models were used to describe the kinetic and equilibrium data of nitrate and phosphate sorption using chitosan/Al2O3/Fe3O4 composite beads and nanofibers. The influence of other anions including chloride, fluoride and sulphate on the sorption efficiency of nitrate and phosphate was examined. The obtained results revealed the higher potential of chitosan/Al2O3/Fe3O4 composite nanofibers for nitrate and phosphate compared with chitosan/Al2O3/Fe3O4 composite beads.
    [Abstract] [Full Text] [Related] [New Search]