These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Aripiprazole inhibits polyI:C-induced microglial activation possibly via TRPM7. Author: Sato-Kasai M, Kato TA, Ohgidani M, Mizoguchi Y, Sagata N, Inamine S, Horikawa H, Hayakawa K, Shimokawa N, Kyuragi S, Seki Y, Monji A, Kanba S. Journal: Schizophr Res; 2016 Dec; 178(1-3):35-43. PubMed ID: 27614570. Abstract: Viral infections during fetal and adolescent periods, as well as during the course of schizophrenia itself have been linked to the onset and/or relapse of a psychosis. We previously reported that the unique antipsychotic aripiprazole, a partial D2 agonist, inhibits the release of tumor necrosis factor (TNF)-α from interferon-γ-activated rodent microglial cells. Polyinosinic-polycytidylic acid (polyI:C) has recently been used as a standard model of viral infections, and recent in vitro studies have shown that microglia are activated by polyI:C. Aripiprazole has been reported to ameliorate behavioral abnormalities in polyI:C-induced mice. To clarify the anti-inflammatory properties of aripiprazole, we investigated the effects of aripiprazole on polyI:C-induced microglial activation in a cellular model of murine microglial cells and possible surrogate cells for human microglia. PolyI:C treatment of murine microglial cells activated the production of TNF-α and enhanced the p38 mitogen-activated protein kinase (MAPK) pathway, whereas aripiprazole inhibited these responses. In addition, polyI:C treatment of possible surrogate cells for human microglia markedly increased TNF-α mRNA expression in cells from three healthy volunteers. Aripiprazole inhibited this increase in cells from two individuals. PolyI:C consistently increased intracellular Ca2+ concentration ([Ca2+]i) in murine microglial cells by influx of extracellular Ca2+. We demonstrated that transient receptor potential in melastatin 7 (TRPM7) channels contributed to this polyI:C-induced increase in [Ca2+]i. Taken together, these data suggest that aripiprazole may be therapeutic for schizophrenia by reducing microglial inflammatory reactions, and TRPM7 may be a novel therapeutic target for schizophrenia. Further studies are needed to validate these findings.[Abstract] [Full Text] [Related] [New Search]