These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Targeting EP4 downstream c-Jun through ERK1/2-mediated reduction of DNMT1 reveals novel mechanism of solamargine-inhibited growth of lung cancer cells. Author: Chen Y, Tang Q, Xiao Q, Yang L, Hann SS. Journal: J Cell Mol Med; 2017 Feb; 21(2):222-233. PubMed ID: 27620163. Abstract: Lung cancer is the most common cancer and the leading cause of cancer deaths worldwide. We previously showed that solamargine, one natural phytochemicals from traditional plants, inhibited the growth of lung cancer cells through inhibition of prostaglandin E2 (PGE2 ) receptor EP4. However, the potential downstream effectors of EP4 involving in the anti-lung cancer effects of solamargine still remained to be determined. In this study, we further verified that solamargine inhibited growth of non-small-cell lung cancer (NSCLC) cells in multiple cell lines. Mechanistically, solamargine increased phosphorylation of ERK1/2. Moreover, solamargine inhibited the protein expression of DNA methyltransferase 1 (DNMT1) and c-Jun, which were abrogated in cells treated with MEK/ERK1/2 inhibitor (PD98059) and transfected with exogenously expressed DNMT1 gene, respectively. Interestingly, overexpressed DNMT1 gene antagonized the effect of solamargine on c-Jun protein expression. Intriguingly, overexpressed c-Jun blocked solamargine-inhibited lung cancer cell growth, and feedback resisted the solamargine-induced phosphorylation of ERK1/2. A nude mouse xenograft model implanted with lung cancer cells in vivo confirmed the results in vitro. Collectively, our results show that solamargine inhibits the growth of human lung cancer cells through reduction of EP4 protein expression, followed by increasing ERK1/2 phosphorylation. This results in decrease in DNMT1 and c-Jun protein expressions. The inter-correlations between EP4, DNMT1 and c-Jun and feedback regulation of ERK1/2 by c-Jun contribute to the overall responses of solamargine in this process. This study uncovers an additional novel mechanism by which solamargine inhibits growth of human lung cancer cells.[Abstract] [Full Text] [Related] [New Search]