These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: De novo sequencing and transcriptome analysis of female venom glands of ectoparasitoid Bracon hebetor (Say.) (Hymenoptera: Braconidae). Author: Manzoor A, UlAbdin Z, Webb BA, Arif MJ, Jamil A. Journal: Comp Biochem Physiol Part D Genomics Proteomics; 2016 Dec; 20():101-110. PubMed ID: 27636656. Abstract: Venom is a key-factor in the regulation of host physiology by parasitic Hymenoptera and a potentially rich source of novel bioactive substances for biotechnological applications. The limited study of venom from the ectoparasitoid Bracon hebetor, a tiny wasp that attacks larval pest insects of field and stored products and is thus a potential insect control agent, has not described the full complement and composition of these biomolecules. To have a comprehensive picture of genes expressed in the venom glands of B. hebetor, a venom gland transcriptome was assembled by using next generation sequencing technologies followed by de novo assemblies of the 10.81 M sequence reads yielded 22,425 contigs, of which 10,581 had significant BLASTx hits to know genes. The majority of hits were to Diachasma alloeum, an ectoparasitoid from same taxonomic family, as well as other wasps. Gene ontology grouped the sequences into molecular functions in which catalytic activity with 42.2% was maximum, cellular components in which cells with 33.8% and biological processes among which metabolic process with 30% had the most representatives. In this study, we highlight the most abundant sequences, and those that are likely to be functional components of the venom for parasitization. Full length ORFs of Calreticulin, Venom Acid Phosphatase Acph-1 like protein and arginine kinase proteins were isolated and their tissue specific expression was studied by RT-PCR. Our report is the first to characterize components of the B. hebetor venom glands that may be useful for developing control tools for insect pests and other applications.[Abstract] [Full Text] [Related] [New Search]