These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Clustered double-strand breaks in heterochromatin perturb DNA repair after high linear energy transfer irradiation.
    Author: Lorat Y, Timm S, Jakob B, Taucher-Scholz G, Rübe CE.
    Journal: Radiother Oncol; 2016 Oct; 121(1):154-161. PubMed ID: 27637859.
    Abstract:
    BACKGROUND AND PURPOSE: High linear energy transfer (LET) radiotherapy offers superior dose conformity and biological effectiveness compared with low-LET radiotherapy, representing a promising alternative for radioresistant tumours. A prevailing hypothesis is that energy deposition along the high-LET particle trajectories induces DNA lesions that are more complex and clustered and therefore more challenging to repair. The precise molecular mechanisms underlying the differences in radiobiological effects between high-LET and low-LET radiotherapies remain unclear. MATERIAL AND METHODS: Human fibroblasts were irradiated with high-LET carbon ions or low-LET photons. At 0.5h and 5h post exposure, the DNA-damage pattern in the chromatin ultrastructure was visualised using gold-labelled DNA-repair factors. The induction and repair of single-strand breaks, double-strand breaks (DSBs), and clustered lesions were analysed in combination with terminal dUTP nick-end labelling of DNA breaks. RESULTS: High-LET irradiation induced clustered lesions with multiple DSBs along ion trajectories predominantly in heterochromatic regions. The cluster size increased over time, suggesting inefficient DSB repair. Low-LET irradiation induced many isolated DSBs throughout the nucleus, most of which were efficiently rejoined. CONCLUSIONS: The clustering of DSBs in heterochromatin following high-LET irradiation perturbs efficient DNA repair, leading to greater biological effectiveness of high-LET irradiation versus that of low-LET irradiation.
    [Abstract] [Full Text] [Related] [New Search]