These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A combined microbial desalination cell and electrodialysis system for copper-containing wastewater treatment and high-salinity-water desalination.
    Author: Dong Y, Liu J, Sui M, Qu Y, Ambuchi JJ, Wang H, Feng Y.
    Journal: J Hazard Mater; 2017 Jan 05; 321():307-315. PubMed ID: 27639207.
    Abstract:
    A new concept for heavy metal removal by forming hydroxide precipitation using alkalinity produced by microbial desalination cell (MDC) was proposed. Four five-chamber MDCs were hydraulically connected to concurrently produce alkalinity to treat synthetic copper-containing wastewater and salt removal. There was nearly complete removal of copper, with a maximum removal rate of 5.07kg/(m3d) under the initial copper concentration of 5000mg/L (final pH of 7). The final copper concentration met the emission standard for electroplating of China (0.5mg/L, GB 21900-2008). XRD analysis indicated copper was precipitated as Cu2Cl(OH)3. The best performance of MDCs in terms of average power density, salt removal and COD removal rate achieved in stage 3 were 737.3±201.1mW/m2, 53.6±0.8kg/(m3d), and 1.84±0.05 kgCOD/(m3d) respectively. For purposes of water recovery, an electrodialysis (ED) system was presented based on in-situ utilization of generated electricity by MDCs as post-desalination treatment for salt effluent after sedimentation. The maximum discharging voltage of 12.75±1.26V at switching time (Ts) of 15min using a capacitor-based circuit produced a maximum desalination efficiency of 30.4±2.6%. These results indicated that this combined system holds great promise for real-world treatment of copper-containing wastewater and deep desalination of high-salinity-water.
    [Abstract] [Full Text] [Related] [New Search]