These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Robust metastable skyrmions and their triangular-square lattice structural transition in a high-temperature chiral magnet.
    Author: Karube K, White JS, Reynolds N, Gavilano JL, Oike H, Kikkawa A, Kagawa F, Tokunaga Y, Rønnow HM, Tokura Y, Taguchi Y.
    Journal: Nat Mater; 2016 Dec; 15(12):1237-1242. PubMed ID: 27643728.
    Abstract:
    Skyrmions, topologically protected nanometric spin vortices, are being investigated extensively in various magnets. Among them, many structurally chiral cubic magnets host the triangular-lattice skyrmion crystal (SkX) as the thermodynamic equilibrium state. However, this state exists only in a narrow temperature and magnetic-field region just below the magnetic transition temperature Tc, while a helical or conical magnetic state prevails at lower temperatures. Here we describe that for a room-temperature skyrmion material, β-Mn-type Co 8Zn 8Mn 4, a field-cooling via the equilibrium SkX state can suppress the transition to the helical or conical state, instead realizing robust metastable SkX states that survive over a very wide temperature and magnetic-field region. Furthermore, the lattice form of the metastable SkX is found to undergo reversible transitions between a conventional triangular lattice and a novel square lattice upon varying the temperature and magnetic field. These findings exemplify the topological robustness of the once-created skyrmions, and establish metastable skyrmion phases as a fertile ground for technological applications.
    [Abstract] [Full Text] [Related] [New Search]