These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differential expressed analysis of Tripterygium wilfordii unigenes involved in terpenoid backbone biosynthesis. Author: Zhang J, Huo YB, Liu Y, Feng JT, Ma ZQ, Zhu CS, Zhang X. Journal: J Asian Nat Prod Res; 2017 Aug; 19(8):823-832. PubMed ID: 27649810. Abstract: Tripterygium wilfordii Hook. f. is the traditional medicinal plants in China. Triptolide, wilforgine, and wilforine are the bioactive compounds in T. wilfordii. In this study, the contents of three metabolites and transcription levels of 21 genes involved in three metabolites biosynthesis in T. wilfordii were examined using high-performance liquid chromatography and reverse transcription PCR after application of methyl jasmonate (MeJA) on hairy roots in time course experiment (3-24 h). The results indicated that application of MeJA inhibited triptolide accumulation and promoted wilforgine and wilforine metabolites biosynthesis. In hairy roots, wilforgine content reached 693.36 μg/g at 6 h after adding MeJA, which was 2.23-fold higher than control. The accumulation of triptolide and wilforine in hairy roots increased the maximum at 9 h, which was 1.3- and 1.6-folds more than the control. Most of the triptolide secretes into the medium, but wilforgine and wilforine cannot secrete into the medium. The expression levels of unigenes which involved terpenoid backbone biosynthesis exist the correlation with marker metabolites (triptolide, wilforgine and wilforine) after induction by MeJA, and can be then used to infer flux bottlenecks in T. wilfordii secondary metabolites accumulation. These results showed that these genes may have potential applications in the metabolic engineering of T. wilfordii metabolites production.[Abstract] [Full Text] [Related] [New Search]