These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sono-sulfated zirconia nanocatalyst supported on MCM-41 for biodiesel production from sunflower oil: Influence of ultrasound irradiation power on catalytic properties and performance. Author: Dehghani S, Haghighi M. Journal: Ultrason Sonochem; 2017 Mar; 35(Pt A):142-151. PubMed ID: 27650807. Abstract: Sono-sulfated zirconia nanocatalyst supported on MCM-41 was prepared by an ultrasound-assisted impregnation/hydrothermal hybrid method. The effect of irradiation power was studied by changing power of the sonication (30, 60 and 90W) during the synthesis which led to different physiochemical properties of the nanocatalyst. XRD, FESEM, EDX, FTIR and BET analyses exhibited smaller particles with higher surface area and less population of particle aggregates at highly irradiated nanocatalysts. The nanocatalyst irradiated at 90W for 30min showed a very narrow particle size distribution. About 59% of nanocatalyst particles were in the range of 1-30nm. The performance of investigated nanocatalysts in biodiesel production from sunflower oil showed ultrasound-assisted synthesized nanocatalysts had higher conversion in comparison to non-sonicated catalyst. Biodiesel conversion in catalyst with 90W and 30min ultrasonic irradiation exceeded 96.9% under constant condition at 60°C reaction temperature, methanol/oil molar ratio of 9:1 and 5% catalyst concentration. After five cycles, biodiesel conversion of non-sonicated catalyst was well maintained in a high extend (71.4%) while biodiesel conversion of non-sonicated catalyst barely reached to 43.5%. Among sonicated nanocatalysts, with increasing power of irradiation, the nanocatalyst represented higher conversion and reusability.[Abstract] [Full Text] [Related] [New Search]