These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Central noradrenergic activity in intact and sinoaortic denervated Dahl rats. Author: Patel KP, Peuler JD, Morgan DA, Pardini BJ, Lund DD, Schmid PG. Journal: Can J Physiol Pharmacol; 1989 May; 67(5):450-5. PubMed ID: 2766093. Abstract: Lesions in forebrain areas richly innervated by noradrenergic terminals and involved in cardiovascular function reduce or prevent hypertension in the Dahl salt-sensitive (S) rats fed a high (H) salt diet. This led us to examine two questions. (1) Is the noradrenergic activity altered in discrete forebrain and brainstem areas of SH rats? (2) Are these changes in noradrenergic activity eliminated by sinoaortic denervation (SAD)? Studies were done in 10-week-old female SH and Dahl salt-resistant (RH) rats. Half of the rats in each group had SAD surgery 1 week prior to study. An index of norepinephrine (NE) turnover was determined by measuring the decline in tissue NE concentration 8 h after administering alpha-methyl-p-tyrosine, a NE synthesis blocker, to animals from each of four groups: sham-RH, SAD-RH, sham-SH, and SAD-SH (n = 18-20 per group). Various discrete brain areas were obtained using the "punch technique." In SH rats the index of NE turnover was increased in the median preoptic nucleus and decreased in the paraventricular nucleus compared with RH rats regardless of SAD. In contrast, in SH rats the index of NE turnover was increased in the supraoptic nucleus and locus ceruleus compared with RH rats; however, SAD-RH had greater turnover of NE at these sites than SAD-SH. In summary, changes in noradrenergic activity in the median preoptic nucleus and the paraventricular nucleus may be related to genetic predisposition to hypertension in SH rats. In contrast, changes in the locus ceruleus and the supraoptic nucleus of SH rats may be related to impaired baroreflexes and thereby contribute to hypertension.[Abstract] [Full Text] [Related] [New Search]