These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pharmacokinetics of buthionine sulfoximine (NSC 326231) and its effect on melphalan-induced toxicity in mice. Author: Smith AC, Liao JT, Page JG, Wientjes MG, Grieshaber CK. Journal: Cancer Res; 1989 Oct 01; 49(19):5385-91. PubMed ID: 2766304. Abstract: Intravenous doses of buthionine sulfoximine (BSO, NSC 326231), an inhibitor of glutathione synthesis, were eliminated rapidly from mouse plasma in a biexponential manner. The initial phase of the plasma concentration versus time curve had a half-life of 4.9 min and accounted for 94% of the total area under the curve. The half-life of the terminal phase of the curve was 36.7 min and the area accounted for only 6% of the total area under the curve. Plasma clearance of BSO was 28.1 ml/min/kg and the steady state volume of distribution was 280 ml/kg. The oral bioavailability of BSO, based on plasma BSO levels, was extremely low. However, comparable glutathione depletion was apparent after i.v. and p.o. doses of BSO, suggesting a rapid tissue uptake and/or metabolism of BSO. Therefore, due to the rapid elimination of BSO from mouse plasma, plasma drug levels do not directly correlate with BSO-induced tissue glutathione depletion. Administration of multiple i.v. doses of BSO to male and female mice resulted in a marked 88% depletion of liver glutathione at doses of 400-1600 mg/kg/dose. Toxicity of i.v. administered BSO was limited to a transient depression of peripheral WBC levels in female mice given six doses of 1600 mg/kg. Multiple i.v. doses of BSO of up to 800 mg/kg/dose (every 4 h for a total of six doses) did not alter the toxicity of i.v. administered melphalan. However, multiple doses of 1600 mg/kg/dose of BSO did potentiate histopathological evidence of melphalan-induced bone marrow toxicity in 30% of the mice and, additionally, the combination of BSO and melphalan produced renal tubular necrosis in 80% of the male mice. The potentiation of melphalan induced toxicity did not appear to be related to GSH depletion, since: quantitatively similar amount of GSH depletion occurred at lower dose of BSO without any increase in melphalan toxicity.[Abstract] [Full Text] [Related] [New Search]