These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of organic amendment on soil aggregation and microbial community composition during drying-rewetting alternation.
    Author: Sun D, Li K, Bi Q, Zhu J, Zhang Q, Jin C, Lu L, Lin X.
    Journal: Sci Total Environ; 2017 Jan 01; 574():735-743. PubMed ID: 27664760.
    Abstract:
    The alternation of drying and rewetting events could dramatically affect the biological and structural properties of soil and consequently influence nutrient transformation. To examine whether organic amendments could improve the resistance and resilience of microbial function (extracellular enzyme activities), community composition (phospholipid fatty acids), and soil structure to drying-rewetting alternation, cropland soils with or without wheat-straw amendment were allowed to desiccate in a microcosm for two months, followed by moist incubation for five weeks, and continuously moist treatments were maintained at 50% water holding capacity during the entire period, as a control treatment. Straw amendment increased microbial biomass, extracellular enzyme activities, the relative abundance of fungal groups, dissolved organic carbon, and proportion of large macroaggregates (>2000μm), but decreased mineral nitrogen and available phosphorus. The drying-rewetting treatment increased microbial biomass carbon and β-glucosidase activities by 10% and 13% in straw-amended soils, respectively, but not in unamended soils, and decreased the urease and alkaline phosphomonoesterase activities by >15% in unamended soils, but not in amended soils. The contents of fungi, actinomycetes, Pseudomonas spp., and Bacillus spp. decreased with drying, and more so with the subsequent rewetting, but recovered by the end of the experiment. The drying-rewetting treatment caused a decrease in the nitrate content in both soils (>10%) and an increase in the macroaggregates of straw-amended soils (~8%). These results indicated that improved soil aggregation, as a result of straw amendment, protected microbial communities from drought stress and that nutrient acquisition promoted the post-rewetting colonization of heterotrophic communities characterized by hydrolase production, which consequently facilitated aggregate re-formation. Thus, straw amendment positively contributed to aggregate turnover and to both microbial and enzymatic responses to drying-rewetting events, which suggests that straw amendment is favorable to maintain soil function under conditions of increasing rainfall variability.
    [Abstract] [Full Text] [Related] [New Search]