These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of hyperventilation, hypothermia, and altered blood viscosity on cerebral blood flow, cross-brain oxygen extraction, and cerebral metabolic rate for oxygen in cats.
    Author: Frewen TC, Sumabat WO, Han VK, Campbell K, Tiffin N.
    Journal: Crit Care Med; 1989 Sep; 17(9):912-6. PubMed ID: 2766765.
    Abstract:
    Therapies including hyperventilation (HV) and hypothermia (HT) are currently simultaneously used in brain-injured children at risk for cerebral swelling to reduce cerebral blood flow (CBF) and alter cerebral metabolic rate for oxygen (CMRO2). Since HV and HT may contribute to significant patient morbidity, we evaluated the effects of these treatments in combination on CBF, CMRO2, and cross-brain oxygen extraction (CBO2) using the Kety-Schmidt technique before controlled bleeding to alter blood viscosity in 20 lightly anesthetized, paralyzed cats, and after bleeding in another 17 cats. The degree of HV (PaCO2 24 to 26 torr) and HT (32 degrees and 30 degrees C) used were representative of that employed in pediatric neurointensive care. HV at normothermia resulted in a significant decline in CBF (P less than .05) and an unchanged CMRO2. HV and HT together to 32 degrees C resulted in a further significant fall in CBF and CMRO2 (p less than .05), but an unchanged CBO2. Further cooling of the animal to 30 degrees C during HV, both before and after controlled bleeding, resulted in no further significant fall in CBF, CBO2, or CMRO2. This relationship was found despite a significant fall in Hgb (p less than .001), suggesting that blood viscosity did not significantly influence CBF at this temperature. Our data suggest that HT to 32 degrees C during HV may have therapeutic benefit by decreasing CBF and CMRO2, but further cooling to 30 degrees C may not result in further cerebral protective effects.
    [Abstract] [Full Text] [Related] [New Search]