These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Facile One-Step Route for the Development of in Situ Cocatalyst-Modified Ti3+ Self-Doped TiO2 for Improved Visible-Light Photocatalytic Activity.
    Author: Kumar R, Govindarajan S, Siri Kiran Janardhana RK, Rao TN, Joshi SV, Anandan S.
    Journal: ACS Appl Mater Interfaces; 2016 Oct 19; 8(41):27642-27653. PubMed ID: 27667775.
    Abstract:
    Development of visible-light-driven photocatalysts by employing a relatively simple, efficient, and cost-effective one-step process is essential for commercial applications. Herein, we report for the first time the synthesis of in situ Cu-ion modified Ti3+ self-doped rutile TiO2 by such a facile one-step solution precursor plasma spray (SPPS) process using a water-soluble titanium precursor. In the SPPS process, Ti3+ self-doping on Ti4+ of rutile TiO2 is found to take place because of electron transfer from the created oxygen vacancies to Ti4+-ions. In situ Cu modification of the above Ti3+ self-doped rutile TiO2 by additionally introducing a Cu solution into plasma plume is also demonstrated. While the Ti3+ self-doping induces broad absorption in the visible-light region, the addition of Cu ion leads to even broader absorption in the visible region owing to resulting synergistic properties. The above materials were evaluated for various self-cleaning photocatalytic applications under visible-light illumination. Cu-ion modified Ti3+ self-doped rutile TiO2 is noted to exhibit a remarkably enhanced visible-light activity in comparison with Ti3+ self-doped rutile TiO2, with the latter itself outperforming commercial TiO2 photocatalysts, thereby suggesting the suitability of the material for indoor applications. The broad visible-light absorption by Ti3+ self-doping, the holes with strong oxidation power generated in the valence band, and electrons in Ti3+ isolated states that are effectively separated into the high reductive sites of Cu ions upon visible-light irradiation, accounts for improved photocatalytic activity. Moreover, the synthesis process (SPPS) provides a valuable alternative to orthodox multistep processes for the preparation of such visible-light-driven photocatalysts.
    [Abstract] [Full Text] [Related] [New Search]