These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The selective permeability barrier in the nuclear pore complex. Author: Li C, Goryaynov A, Yang W. Journal: Nucleus; 2016 Sep 02; 7(5):430-446. PubMed ID: 27673359. Abstract: The nuclear pore complex (NPC) mediates the shuttle transport of macromolecules between the nucleus and cytoplasm in eukaryotic cells. The permeability barrier formed by intrinsically disordered phenylalanine-glycine-rich nucleoporins (FG-Nups) in the NPC functions as the critical selective control for nucleocytoplasmic transport. Signal-independent small molecules (< 40 kDa) passively diffuse through the pore, but passage of large cargo molecules is inhibited unless they are chaperoned by nuclear transport receptors (NTRs). NTRs are capable of interacting with FG-Nups and guide the cargos to cross the barrier by facilitated diffusion. The native conformation of the FG-Nups permeability barrier and the competition among multiple NTRs interacting with this barrier in the native NPCs are the 2 core questions still being highly debated in the field. Recently, we applied high-speed super-resolution fluorescence microscopy to map out the natural structure of the FG-Nups barrier and determined the competition among multiple NTRs as they interact with the barrier in the native NPCs. In this extra-view article, we will review the current understanding in the configuration and function of FG-Nups barrier and highlight the new evidence obtained recently to answer the core questions in nucleocytoplasmic transport.[Abstract] [Full Text] [Related] [New Search]