These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of Secreted Molecules of Human Embryonic Stem Cell-Derived Mesenchymal Stem Cells on Acute Hepatic Failure Model. Author: Lotfinia M, Kadivar M, Piryaei A, Pournasr B, Sardari S, Sodeifi N, Sayahpour FA, Baharvand H. Journal: Stem Cells Dev; 2016 Dec 15; 25(24):1898-1908. PubMed ID: 27676103. Abstract: Adult tissue-derived mesenchymal stem cells (MSCs) show tremendous promise for a wide array of therapeutic applications predominantly through paracrine activity. Recent reports showed that human embryonic stem cell (ESC)-derived MSCs are an alternative for regenerative cellular therapy due to manufacturing large quantities of MSCs from a single donor. However, no study has been reported to uncover the secretome of human ESC-MSCs as treatment of an acute liver failure (ALF) mouse model. We demonstrated that human ESC-MSCs showed similar morphology and cell surface markers compared with bone marrow-derived MSCs. ESC-MSCs exhibited a higher growth rate during early in vitro expansion, along with adipogenic and osteogenic differentiation potential. Treatment with ESC-MSC-conditioned medium (CM) led to statistically significant enhancement of primary hepatocyte viability and increased immunomodulatory interleukin-10 secretion from lipopolysaccharide-induced human blood mononuclear cells. Analysis of the MSCs secretome by a protein array screen showed an association between higher frequencies of secretory proteins such as vascular endothelial growth factor (VEGF) and regulation of cell proliferation, cell migration, the development process, immune system process, and apoptosis. In this thioacetamide-induced mouse model of acute liver injury, we observed that systemic infusion of VEGF led to significant survival. These data have provided the first experimental evidence of the therapeutic potential of human ESC-MSC-derived molecules. These molecules show trophic support to hepatocytes, which potentially creates new avenues for the treatment of ALF, as an inflammatory condition.[Abstract] [Full Text] [Related] [New Search]