These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sevoflurane-Induced Endoplasmic Reticulum Stress Contributes to Neuroapoptosis and BACE-1 Expression in the Developing Brain: The Role of eIF2α.
    Author: Liu B, Xia J, Chen Y, Zhang J.
    Journal: Neurotox Res; 2017 Feb; 31(2):218-229. PubMed ID: 27682474.
    Abstract:
    Neonatal exposure to volatile anesthetics causes apoptotic neurodegeneration in the developing brain, possibly leading to neurocognitive deficits in adulthood. Endoplasmic reticulum (ER) stress might be associated with sevoflurane (sevo)-induced neuroapoptosis. However, the signaling pathway regulating sevo-induced neuroapoptosis is not understood. We investigated the effects of neonatal sevo exposure on ER signaling pathway activation. Seven-day-old mouse pups were divided into control (C) and sevo (S; 3 % sevo exposure, 6 h) groups. ER stress marker [protein kinase RNA-like ER kinase (PERK), eukaryotic translation initiation factor 2α (eIF2α), activating transcription factor 4 (ATF4), CHOP, and caspase-12] levels were determined by western blotting. To understand the role of eIF2α in sevo-induced ER stress and caspase-3 activation, pups were pretreated with an eIF2α dephosphorylation inhibitor, salubrinal, and a potent and selective inhibitor of PERK, GSK2656157, before sevo exposure, and the effects on ER stress signaling and neuroapoptosis were examined. We investigated whether neonatal exposure to sevo increased β-site APP-cleaving enzyme 1 (BACE-1) expression. Neonatal sevo exposure elevated caspase-3 activation. ER stress signaling was activated, along with increased PERK and eIF2α phosphorylation, and upregulation of proapoptotic proteins (ATF4 and CHOP) in the cerebral cortex of the developing brain. Pretreatment with salubrinal augmented sevo-induced eIF2α phosphorylation, which inhibited ER stress-mediated ATF4 and caspase-3 activation. Inhibition of PERK phosphorylation due to GSK2656157 pretreatment reduced the sevo-induced increase in eIF2α phosphorylation. Sevo increased BACE-1 expression, which was attenuated by GSK2656157 and salubrinal pretreatment. Our data suggested that neonatal sevo exposure-induced neuroapoptosis is mediated via the PERK-eIF2α-ATF4-CHOP axis of the ER stress signaling pathway. Modulation of eIF2α phosphorylation may play a key role in sevo-induced neurotoxicity in the developing brain.
    [Abstract] [Full Text] [Related] [New Search]