These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Implementation of a double Gaussian source model for the BEAMnrc Monte Carlo code and its influence on small fields dose distributions.
    Author: Doerner E, Caprile P.
    Journal: J Appl Clin Med Phys; 2016 Sep 08; 17(5):212-221. PubMed ID: 27685141.
    Abstract:
    The shape of the radiation source of a linac has a direct impact on the delivered dose distributions, especially in the case of small radiation fields. Traditionally, a single Gaussian source model is used to describe the electron beam hitting the target, although different studies have shown that the shape of the electron source can be better described by a mixed distribution consisting of two Gaussian components. Therefore, this study presents the implementation of a double Gaussian source model into the BEAMnrc Monte Carlo code. The impact of the double Gaussian source model for a 6 MV beam is assessed through the comparison of different dosimetric parameters calculated using a single Gaussian source, previously com-missioned, the new double Gaussian source model and measurements, performed with a diode detector in a water phantom. It was found that the new source can be easily implemented into the BEAMnrc code and that it improves the agreement between measurements and simulations for small radiation fields. The impact of the change in source shape becomes less important as the field size increases and for increasing distance of the collimators to the source, as expected. In particular, for radiation fields delivered using stereotactic collimators located at a distance of 59 cm from the source, it was found that the effect of the double Gaussian source on the calculated dose distributions is negligible, even for radiation fields smaller than 5 mm in diameter. Accurate determination of the shape of the radiation source allows us to improve the Monte Carlo modeling of the linac, especially for treatment modalities such as IMRT, were the radiation beams used could be very narrow, becoming more sensitive to the shape of the source.
    [Abstract] [Full Text] [Related] [New Search]