These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Development of the rat thalamus: IV. The intermediate lobule of the thalamic neuroepithelium, and the time and site of origin and settling pattern of neurons of the ventral nuclear complex.
    Author: Altman J, Bayer SA.
    Journal: J Comp Neurol; 1989 Jun 22; 284(4):534-66. PubMed ID: 2768551.
    Abstract:
    Short-survival, sequential, and long-survival thymidine radiograms of rat embryos, fetuses, and young pups were analyzed in order to examine the time of origin, settling pattern, migratory route, and site of origin of neurons of the ventral nuclear complex of the thalamus. Quantitative examination of long-survival radiograms established that the bulk of the neurons of the ventral nuclear complex are generated between days E14 and E16 but with statistically significant differences between its three nuclei. The ventrobasal nucleus is the oldest component (97% of the cells are generated on days E14 and E15); the ventrolateral nucleus is next (82% of the cells are generated on days E14 and E15); and the ventromedial nucleus is last (51% of the cells are generated on days E14 and E15). In addition to this caudal-to-rostral (from the ventrobasal nucleus to the ventrolateral nucleus) and lateral-to-medial (from the ventrobasal nucleus to the ventromedial nucleus) internuclear gradients, there are lateral-to-medial and ventral-to-dorsal intranuclear neurogenetic gradients within the ventrobasal and ventrolateral nuclei. Qualitative examination of short and sequential survival thymidine radiograms indicate that the neurons of the ventral nuclear complex originate in the unique intermediate thalamic neuroepithelial lobule, which is distinguished from the rest of the thalamic neuroepithelium by the presence of a mitotically active secondary neuroepithelial matrix. Two sublobules can be distinguished in the intermediate lobule during the early stages of thalamic development. On the basis of their location and chronological pattern of cell production and differentiation, it is inferred that the neurons of the ventrobasal nucleus originate in the earlier differentiating, posteroventrally situated inverted sublobule, and the neurons of the ventrolateral nucleus are produced in the later differentiating, anterodorsally situated everted sublobule. The neurons of the ventromedial nucleus appear to originate from the intermediate neuroepithelial lobule after its two sublobules are no longer distinguishable. The heavily labeled neurons generated soon after injection on day E15 form a wave front that translocates in a lateral direction at a steady rate of 215 microns/day. Examination of methacrylate-embedded materials showed that, in day E15 rats the actively migrating cells are spindle-shaped, with their long axis oriented horizontally. The far-laterally situated differentiating cells (the oldest neurons) become vertically oriented by day E16. Associated with this change in polarity, vertically oriented fibers appear among the cells. These fibers can be traced to the inte
    [Abstract] [Full Text] [Related] [New Search]