These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Lack of mitochondrial DNA impairs chemical hypoxia-induced autophagy in liver tumor cells through ROS-AMPK-ULK1 signaling dysregulation independently of HIF-1α.
    Author: Marin JJG, Lozano E, Perez MJ.
    Journal: Free Radic Biol Med; 2016 Dec; 101():71-84. PubMed ID: 27687210.
    Abstract:
    Alterations in mitochondrial DNA (mtDNA) and autophagy activation are common events in tumors. Here we have investigated the effect of mitochondrial genome depletion on chemical hypoxia-induced autophagy in liver tumor cells. Human SK-Hep-1 wild-type and mtDNA-depleted (Rho) cells were exposed to the hypoxia mimetic agents CoCl2 and deferoxamine (DFO). Up-regulation of HIF-1α, but not HIF-2α was observed. The expression of several HIF-1α target genes was also found. In human SK-Hep-1 and mouse Hepa 1-6 liver tumor cells, but not in the counterpart Rho derived lines, chemical hypoxia increased the abundance of autophagosomes and autolysosomes. In wild-type and Rho cells, chemical hypoxia induced down-regulation of HIF-1α-dependent autophagy inhibitors Bcl-2 and mTOR, whereas activation of AMPK/ULK1-mediated pro-autophagy pathway occurred only in wild-type cells. Chemical (compound C) and genetic (shRNA) inhibition of AMPK activation resulted in reduced autophagy. ATP levels were similar in both cell types, whereas constitutive and chemical hypoxia-induced reactive oxygen species (ROS) generation was lower in Rho cells. In wild-type cells, the antioxidant N-acetylcysteine blocked CoCl2- and DFO-induced AMPK and autophagy activation, but not endoplasmic reticulum stress induced by CoCl2. Enhanced Bax-α/Bcl-2 ratio and cell death was induced by hypoxia mimetic agents more markedly in wild-type than in Rho cells. Upon blocking autophagy activation with 3-methyladenine, DFO-induced cell death was partially prevented whereas that induced by CoCl2 was increased, but only in wild-type cells. These results suggest that mitochondrial dysfunction associated with the lack of mtDNA impairs the signaling pathways mediated by ROS, controlling autophagy activation in liver tumor cells, which may contributes to cancer development.
    [Abstract] [Full Text] [Related] [New Search]