These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of heavy-intensity 'priming' exercise on oxygen uptake and muscle deoxygenation kinetics during moderate-intensity step-transitions initiated from an elevated work rate. Author: Nederveen JP, Keir DA, Love LK, Rossiter HB, Kowalchuk JM. Journal: Respir Physiol Neurobiol; 2017 Jan; 235():62-70. PubMed ID: 27693390. Abstract: We examined the effect of heavy-intensity 'priming' exercise on the rate of adjustment of pulmonary O2 uptake (τV˙O2p) initiated from elevated intensities. Fourteen men (separated into two groups: τV˙O2p≤25s [Fast] or τV˙O2p>25s [Slow]) completed step-transitions from 20W to 45% lactate threshold (LT; lower-step, LS) and 45% to 90%LT (upper-step, US) performed (i) without; and (ii) with US preceded by heavy-intensity exercise (HUS). Breath-by-breath V˙O2p and near-infrared spectroscopy-derived muscle deoxygenation ([HHb+Mb]) were measured. Compared to LS, τV˙O2p was greater (p<0.05) in US in both Fast (LS, 19±4s; US, 30±4s) and Slow (LS, 25±5s; US, 40±11s) with τV˙O2p in US being lower (p<0.05) in Fast. In HUS, τV˙O2p in Slow was reduced (28±8s, p<0.05) and was not different (p>0.05) from LS or Fast group US. In Slow, τ[HHb+Mb] increased (p<0.05) in US relative to HUS; this finding coupled with a reduced τV˙O2p indicates a priming-induced improvement in matching of muscle O2 delivery-to-O2 utilization during transitions from elevated intensities in those with Slow but not Fast V˙O2p kinetics.[Abstract] [Full Text] [Related] [New Search]