These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dynamic contrast-enhanced MRI measurement of renal function in healthy participants. Author: Eikefjord E, Andersen E, Hodneland E, Hanson EA, Sourbron S, Svarstad E, Lundervold A, Rørvik JT. Journal: Acta Radiol; 2017 Jun; 58(6):748-757. PubMed ID: 27694276. Abstract: Background High repeatability, accuracy, and precision for renal function measurements need to be achieved to establish renal dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) as a clinically useful diagnostic tool. Purpose To investigate the repeatability, accuracy, and precision of DCE-MRI measured renal perfusion and glomerular filtration rate (GFR) using iohexol-GFR as the reference method. Material and Methods Twenty healthy non-smoking volunteers underwent repeated DCE-MRI and an iohexol-GFR within a period of 10 days. Single-kidney (SK) MRI measurements of perfusion (blood flow, Fb) and filtration (GFR) were derived from parenchymal intensity time curves fitted to a two-compartment filtration model. The repeatability of the SK-MRI measurements was assessed using coefficient of variation (CV). Using iohexol-GFR as reference method, the accuracy of total MR-GFR was determined by mean difference (MD) and precision by limits of agreement (LoA). Results SK-Fb (MR1, 345 ± 84; MR2, 371 ± 103 mL/100 mL/min) and SK-GFR (MR1, 52 ± 14; MR2, 54 ± 10 mL/min/1.73 m2) measurements achieved a repeatability (CV) in the range of 15-22%. With reference to iohexol-GFR, MR-GFR was determined with a low mean difference but high LoA (MR1, MD 1.5 mL/min/1.73 m2, LoA [-42, 45]; MR2, MD 6.1 mL/min/1.73 m2, LoA [-26, 38]). Eighty percent and 90% of MR-GFR measurements were determined within ± 30% of the iohexol-GFR for MR1 and MR2, respectively. Conclusion Good repeatability of SK-MRI measurements and good agreement between MR-GFR and iohexol-GFR provide a high clinical potential of DCE-MRI for renal function assessment. A moderate precision in MR-derived estimates indicates that the method cannot yet be used in clinical routine.[Abstract] [Full Text] [Related] [New Search]