These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The effects of increasing supplementation of zinc-amino acid complex on growth performance, carcass characteristics, and inflammatory response of beef cattle fed ractopamine hydrochloride.
    Author: Genther-Schroeder ON, Branine ME, Hansen SL.
    Journal: J Anim Sci; 2016 Aug; 94(8):3389-3398. PubMed ID: 27695784.
    Abstract:
    Forty-two Angus crossbred steers (380 ± 5.3 kg) were enrolled in a finishing study to evaluate the influence of a supplemental Zn amino-acid complex (ZnAA; Availa-Zn) on performance and carcass characteristics of finishing steers in combination with ractopamine hydrochloride (RAC). Steers were stratified by BW into 7 pens of 6 steers each, and individual feed intake was measured. Steers were assigned to 1 of 4 treatments for 86 d (pre-RAC period): a dry-rolled corn-based diet supplemented with 60 mg Zn/kg DM from ZnSO and no supplemental ZnAA (CON; analyzed 88 mg Zn/kg DM; = 6) or CON diet supplemented with 30 (Zn30; = 12), 60 (Zn60; = 12), or 90 (Zn90; = 11) mg Zn/kg DM from ZnAA. Day 86 BW and G:F displayed a quadratic tendency ( = 0.09) with Zn60 steers being greater than the other treatments. Plasma cyclic adenosine monophosphate tended to linearly increase with increasing ZnAA ( = 0.10). On d 88, 6 of 12 steers (one of the 2 pens) receiving supplemental ZnAA was randomly selected to be supplemented with RAC at 300 mg∙steer∙d for the final 28 d of the experiment (RAC period). This created 7 final treatments: CON: no supplemental ZnAA, no RAC ( = 5); Zn30: Zn30, no RAC ( = 5); Zn30R: Zn30 + RAC ( = 6); Zn60: Zn60, no RAC ( = 6); Zn60R: Zn60 + RAC ( = 6); Zn90: Zn90, no RAC ( = 5); and Zn90R: Zn90 + RAC ( = 6). During the RAC period, as supplemental ZnAA increased within RAC-supplemented treatments, there was a linear increase in final BW, ADG, and G:F ( < 0.05). However, there was no effect of supplemental ZnAA on BW, ADG, or G:F during this period in non-RAC fed steers ( ≥ 0.44). Day 111 plasma Cu was increased, plasma Fe decreased, and leukocyte counts and serum interleukin-8 concentrations were greater ( < 0.05) in RAC-fed steers suggesting that RAC may elicit a mild inflammatory response. There was a tendency for increasing Zn supplementation to decrease plasma haptoglobin within RAC-fed steers ( = 0.07), suggesting that Zn may alter the inflammatory response. Overall, Zn60 improved growth performance during the pre-RAC period. Zinc supplemented as ZnAA appears to improve growth in combination with RAC supplementation, suggesting that Zn may enhance or support the biological function of RAC. Additionally, these results indicate that feeding RAC impacts trace mineral status, and potentially causes a non-specific inflammatory response, but further research is required to define this response.
    [Abstract] [Full Text] [Related] [New Search]