These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Gate fidelity and coherence of an electron spin in an Si/SiGe quantum dot with micromagnet.
    Author: Kawakami E, Jullien T, Scarlino P, Ward DR, Savage DE, Lagally MG, Dobrovitski VV, Friesen M, Coppersmith SN, Eriksson MA, Vandersypen LM.
    Journal: Proc Natl Acad Sci U S A; 2016 Oct 18; 113(42):11738-11743. PubMed ID: 27698123.
    Abstract:
    The gate fidelity and the coherence time of a quantum bit (qubit) are important benchmarks for quantum computation. We construct a qubit using a single electron spin in an Si/SiGe quantum dot and control it electrically via an artificial spin-orbit field from a micromagnet. We measure an average single-qubit gate fidelity of ∼99% using randomized benchmarking, which is consistent with dephasing from the slowly evolving nuclear spins in the substrate. The coherence time measured using dynamical decoupling extends up to ∼400 μs for 128 decoupling pulses, with no sign of saturation. We find evidence that the coherence time is limited by noise in the 10-kHz to 1-MHz range, possibly because charge noise affects the spin via the micromagnet gradient. This work shows that an electron spin in an Si/SiGe quantum dot is a good candidate for quantum information processing as well as for a quantum memory, even without isotopic purification.
    [Abstract] [Full Text] [Related] [New Search]