These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Biological treatment of actual petrochemical wastewater using anaerobic/anoxic/oxic process and the microbial diversity analysis. Author: Ding P, Chu L, Wang J. Journal: Appl Microbiol Biotechnol; 2016 Dec; 100(23):10193-10202. PubMed ID: 27709287. Abstract: A novel process integrating anaerobic hydrolysis-acidification (HA) and anoxic/oxic (A/O) reactors was developed to treat the actual petrochemical wastewater, which was operated for more than 8 months, the removal efficiency of COD and NH4+-N was monitored, and the microbial community was analyzed. The results showed that the effluent concentrations were maintained at around 99 and 1.3 mg/L, with the removal efficiency of 70.6 and 95.4 %, respectively at a total hydraulic retention time (HRT) of 20 h. The major pollutants in the influent were identified as hydrocarbons, aldehydes, heterocyclic matters, amines, alcohols, phenols, ketones, etc. by GC-MS analysis, while only heterocyclic compounds, ketones, and esters were detected in the effluent after HA-A/O treatment. Bacteria belonging to phyla Chloroflexi, Proteobacteria, and Bacteroidetes were highly enriched in the system. The predominant genera in HA, anoxic, and oxic tanks were Anaerolineaceae uncultured and Desulfobacter, Blastocatella and Anaerolineaceae uncultured, Saprospiraceae uncultured and Nitrosomonadaceae uncultured, respectively. The sulfate-reducing bacteria Desulfobacter, Desulfofustis and Desulfomicrobium were detected only in HA reactor. The ammonium-oxidizing bacteria Nitrosomonadaceae and Nitrosomonas and nitrite-oxidizing bacteria Nitrospira were highly enriched in A/O reactor, which is consistent with the good nitrification performance.[Abstract] [Full Text] [Related] [New Search]