These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Spatial variability and reproducibility of GABA-edited MEGA-LASER 3D-MRSI in the brain at 3 T.
    Author: Hnilicová P, Považan M, Strasser B, Andronesi OC, Gajdošík M, Dydak U, Ukropec J, Dobrota D, Trattnig S, Bogner W.
    Journal: NMR Biomed; 2016 Nov; 29(11):1656-1665. PubMed ID: 27717093.
    Abstract:
    The reproducibility of gamma-aminobutyric acid (GABA) quantification results, obtained with MRSI, was determined on a 3 T MR scanner in healthy adults. In this study, a spiral-encoded, GABA-edited, MEGA-LASER MRSI sequence with real-time motion-scanner-instability corrections was applied for robust 3D mapping of neurotransmitters in the brain. In particular, the GABA+ (i.e. GABA plus macromolecule contamination) and Glx (i.e. glutamate plus glutamine contamination) signal was measured. This sequence enables 3D-MRSI with about 3 cm3 nominal resolution in about 20 min. Since reliable quantification of GABA is challenging, the spatial distribution of the inter-subject and intra-subject variability of GABA+ and Glx levels was studied via test-retest assessment in 14 healthy volunteers (seven men-seven women). For both inter-subject and intra-subject repeated measurement sessions a low coefficient of variation (CV) and a high intraclass correlation coefficient (ICC) were found for GABA+ and Glx ratios across all evaluated voxels (intra-/inter-subject: GABA+ ratios, CV ~ 8%-ICC > 0.75; Glx ratios, CV ~ 6%-ICC > 0.70). The same was found in selected brain regions for Glx ratios versus GABA+ ratios (CV varied from about 5% versus about 8% in occipital and parietal regions, to about 8% versus about 10% in the frontal area, thalamus, and basal ganglia). These results provide evidence that 3D mapping of GABA+ and Glx using the described methodology provides high reproducibility for application in clinical and neuroscientific studies.
    [Abstract] [Full Text] [Related] [New Search]