These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evaluation of dietary betaine in lactating Holstein cows subjected to heat stress.
    Author: Hall LW, Dunshea FR, Allen JD, Rungruang S, Collier JL, Long NM, Collier RJ.
    Journal: J Dairy Sci; 2016 Dec; 99(12):9745-9753. PubMed ID: 27720159.
    Abstract:
    Betaine (BET), a natural, organic osmolyte, improves cellular efficiency by acting as a chaperone, refolding denatured proteins. To test if dietary BET reduced the effect of heat stress (HS) in lactating dairy cows, multiparous, lactating Holstein cows (n=24) were blocked by days in milk (101.4±8.6 d) and randomly assigned to 1 of 3 daily intakes of dietary BET: the control (CON) group received no BET, mid intake (MID) received 57mg of BET/kg of body weight, and high dose (HI) received 114mg of BET/kg of body weight. Cows were fed twice daily and BET was top-dressed at each feeding. Cows were milked 2 times/d and milk samples were taken daily for analysis. Milk components, yield, feed intake, and water intake records were taken daily. Rectal temperature and respiration rate were taken 3 times/d at 0600, 1400, and 1800h. Cows were housed in environmentally controlled rooms and were allowed acclimation for 7d at thermoneutral (TN) conditions with a mean temperature-humidity index of 56.6. Cows were then exposed to 7d of TN followed by 7d of HS represented by a temperature-humidity index of 71.5 for 14d. This was followed by a recovery period of 3d at TN. Dietary BET increased milk yield during the TN period. No differences were found between BET and CON in total milk production or milk composition during HS. The increase in water intake during HS was not as great for cows fed BET compared with controls. The cows on CON diets had higher p.m. respiration rate than both MID and HI BET during HS, but lower rectal temperature compared with BET. No difference was found in serum glucose during TN, but cows given HI had elevated glucose levels during HS compared with CON. No differences were found in serum insulin levels between CON and BET but an intake by environment interaction was present with insulin increasing in HI-treated lactating dairy cows during HS. The heat shock response [heat shock protein (HSP) 27 and HSP70] was upregulated in bovine mammary epithelial cells in vitro. Blood leukocyte HSP27 was downregulated at the HI dose under TN conditions and HSP70 was upregulated at the HI dose and this effect was increased by HS. No effect was seen with the MID dose with HSP27 or HSP70. The lack of effect of BET at MID may be associated with uptake across the gut. We conclude that BET increased milk production under TN conditions and was associated with reduced feed and water intake and slightly increased body temperatures during HS of cows fed BET. The effect of BET on milk production was lost during HS with HI BET, whereas serum glucose levels increased during HS.
    [Abstract] [Full Text] [Related] [New Search]