These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe2. Author: Wang Y, Liu E, Liu H, Pan Y, Zhang L, Zeng J, Fu Y, Wang M, Xu K, Huang Z, Wang Z, Lu HZ, Xing D, Wang B, Wan X, Miao F. Journal: Nat Commun; 2016 Oct 11; 7():13142. PubMed ID: 27725682. Abstract: The progress in exploiting new electronic materials has been a major driving force in solid-state physics. As a new state of matter, a Weyl semimetal (WSM), in particular a type-II WSM, hosts Weyl fermions as emergent quasiparticles and may harbour novel electrical transport properties. Nevertheless, such a type-II WSM material has not been experimentally observed. In this work, by performing systematic magneto-transport studies on thin films of a predicted material candidate WTe2, we observe notable negative longitudinal magnetoresistance, which can be attributed to the chiral anomaly in WSM. This phenomenon also exhibits strong planar orientation dependence with the absence along the tungsten chains, consistent with the distinctive feature of a type-II WSM. By applying a gate voltage, we demonstrate that the Fermi energy can be in-situ tuned through the Weyl points via the electric field effect. Our results may open opportunities for implementing new electronic applications, such as field-effect chiral devices.[Abstract] [Full Text] [Related] [New Search]