These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Novel Li[(CF3SO2)(n-C4F9SO2)N]-Based Polymer Electrolytes for Solid-State Lithium Batteries with Superior Electrochemical Performance.
    Author: Ma Q, Qi X, Tong B, Zheng Y, Feng W, Nie J, Hu YS, Li H, Huang X, Chen L, Zhou Z.
    Journal: ACS Appl Mater Interfaces; 2016 Nov 02; 8(43):29705-29712. PubMed ID: 27726333.
    Abstract:
    Solid polymer electrolytes (SPEs) would be promising candidates for application in high-energy rechargeable lithium (Li) batteries to replace the conventional organic liquid electrolytes, in terms of the enhanced safety and excellent design flexibility. Herein, we first report novel perfluorinated sulfonimide salt-based SPEs, composed of lithium (trifluoromethanesulfonyl)(n-nonafluorobutanesulfonyl)imide (Li[(CF3SO2)(n-C4F9SO2)N], LiTNFSI) and poly(ethylene oxide) (PEO), which exhibit relatively efficient ionic conductivity (e.g., 1.04 × 10-4 S cm-1 at 60 °C and 3.69 × 10-4 S cm-1 at 90 °C) and enough thermal stability (>350 °C), for rechargeable Li batteries. More importantly, the LiTNFSI-based SPEs could not only deliver the excellent interfacial compatibility with electrodes (e.g., Li-metal anode, LiFePO4 and sulfur composite cathodes), but also afford good cycling performances for the Li|LiFePO4 (>300 cycles at 1C) and Li-S cells (>500 cycles at 0.5C), in comparison with the conventional LiTFSI (Li[(CF3SO2)2N])-based SPEs. The interfacial impedance and morphology of the cycled Li-metal electrodes are also comparatively analyzed by electrochemical impedance spectra and scanning electron microscopy, respectively. These indicate that the LiTNFSI-based SPEs would be potential alternatives for application in high-energy solid-state Li batteries.
    [Abstract] [Full Text] [Related] [New Search]