These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Asynchronous Development of Cerebellar, Cerebello-Cortical, and Cortico-Cortical Functional Networks in Infancy, Childhood, and Adulthood.
    Author: Kipping JA, Tuan TA, Fortier MV, Qiu A.
    Journal: Cereb Cortex; 2017 Nov 01; 27(11):5170-5184. PubMed ID: 27733542.
    Abstract:
    Evidence from clinical studies shows that early cerebellar injury can cause abnormal development of the cerebral cortex in children. Characterization of normative development of the cerebellar and cerebello-cortical organization in early life is of great clinical importance. Here, we analyzed cerebellar, cerebello-cortical, and cortico-cortical functional networks using resting-state functional magnetic resonance imaging data of healthy infants (6 months, n = 21), children (4-10 years, n = 68), and adults (23-38 years, n = 25). We employed independent component analysis and identified 7 cerebellar functional networks in infants and 12 in children and adults. We revealed that the cerebellum was functionally connected with the sensorimotor cortex in infants but with the sensorimotor, executive control, and default mode systems of the cortex in children and adults. The functional connectivity strength in the cerebello-cortical functional networks of sensorimotor, executive control, and default mode systems was the strongest in middle childhood, but was weaker in adulthood. In contrast, the functional coherence of the cortico-cortical networks was stronger in adulthood. These findings suggest early synchronization of the cerebello-cortical networks in infancy, particularly in the early developing primary sensorimotor system. Conversely, age-related differences of cerebellar, cerebello-cortical, and cortico-cortical functional networks in childhood and adulthood suggest potential asynchrony of the cerebellar and cortical functional maturation.
    [Abstract] [Full Text] [Related] [New Search]