These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cu, Zn-Superoxide Dismutase Increases the Therapeutic Potential of Adipose-derived Mesenchymal Stem Cells by Maintaining Antioxidant Enzyme Levels. Author: Yoo DY, Kim DW, Chung JY, Jung HY, Kim JW, Yoon YS, Hwang IK, Choi JH, Choi GM, Choi SY, Moon SM. Journal: Neurochem Res; 2016 Dec; 41(12):3300-3307. PubMed ID: 27743287. Abstract: In the present study, we investigated the ability of Cu, Zn-superoxide dismutase (SOD1) to improve the therapeutic potential of adipose tissue-derived mesenchymal stem cells (Ad-MSCs) against ischemic damage in the spinal cord. Animals were divided into four groups: the control group, vehicle (PEP-1 peptide and artificial cerebrospinal fluid)-treated group, Ad-MSC alone group, and Ad-MSC-treated group with PEP-1-SOD1. The abdominal aorta of the rabbit was occluded for 30 min in the subrenal region to induce ischemic damage, and immediately after reperfusion, artificial cerebrospinal fluid or Ad-MSCs (2 × 105) were administered intrathecally. In addition, PEP-1 or 0.5 mg/kg PEP-1-SOD1 was administered intraperitoneally to the Ad-MSC-treated rabbits. Motor behaviors and NeuN-immunoreactive neurons were significantly decreased in the vehicle-treated group after ischemia/reperfusion. Administration of Ad-MSCs significantly ameliorated the changes in motor behavior and NeuN-immunoreactive neuronal survival. In addition, the combination of PEP-1-SOD1 and Ad-MSCs further increased the ameliorative effects of Ad-MSCs in the spinal cord after ischemia. Furthermore, the administration of Ad-MSCs with PEP-1-SOD1 decreased lipid peroxidation and maintained levels of antioxidants such as SOD1 and glutathione peroxidase compared to the Ad-MSC alone group. These results suggest that combination therapy using Ad-MSCs and PEP-1-SOD1 strongly protects neurons from ischemic damage by modulating the balance of lipid peroxidation and antioxidants.[Abstract] [Full Text] [Related] [New Search]