These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Gigantism: X-linked acrogigantism and GPR101 mutations.
    Author: Iacovazzo D, Korbonits M.
    Journal: Growth Horm IGF Res; 2016; 30-31():64-69. PubMed ID: 27743704.
    Abstract:
    X-linked acrogigantism (XLAG) is a recently identified condition of early-onset GH excess resulting from the germline or somatic duplication of the GPR101 gene on chromosome Xq26.3. Thirty patients have been formally reported so far. The disease affects mostly females, occurs usually sporadically, and is characterised by early onset and marked overgrowth. Most patients present with concomitant hyperprolactinaemia. Histopathology shows pituitary hyperplasia or pituitary adenoma with or without associated hyperplasia. XLAG-related pituitary adenomas present peculiar histopathological features that should contribute to raise the suspicion of this rare condition. Treatment is frequently challenging and multi-modal. While females present with germline mutations, the sporadic male patients reported so far were somatic mosaics with variable levels of mosaicism, although no differences in the clinical phenotype were observed between patients with germline or somatic duplication. The GPR101 gene encodes an orphan G protein-coupled receptor normally expressed in the central nervous system, and at particularly high levels in the hypothalamus. While the physiological function and the endogenous ligand of GPR101 are unknown, the high expression of GPR101 in the arcuate nucleus and the occurrence of increased circulating GHRH levels in some patients with XLAG, suggest that increased hypothalamic GHRH secretion could play a role in the pathogenesis of this condition. In this review, we summarise the published evidence on XLAG and GPR101 and discuss the results of recent studies that have investigated the potential role of GPR101 variants in the pathogenesis of pituitary adenomas.
    [Abstract] [Full Text] [Related] [New Search]