These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nanoemulsion enhances α-tocopherol succinate bioavailability in rats.
    Author: Gao Y, Qi X, Zheng Y, Ji H, Wu L, Zheng N, Tang J.
    Journal: Int J Pharm; 2016 Dec 30; 515(1-2):506-514. PubMed ID: 27746330.
    Abstract:
    The vitamin E analogue, α-tocopherol succinate (α-TOS), has a broad anti-tumor effect. α-TOS can induce cancer cells apoptosis and suppress tumor growth by targeting mitochondria. Low bioavailability of α-TOS is the major problem encountered with formulation development. In our study, α-TOS nanoemulsion (α-TOS-NE) was demonstrated as a new drug delivery system of α-TOS to increase the bioavailability. MTT-based cytotoxicity assay and mitochondrial membrane potential (ΔY) were performed on human breast cancer cell lines MCF-7 and human oral epithelial cancer cell lines KB to evaluate in vitro anticancer efficacy of α-TOS-NE. In comparison with free α-TOS, α-TOS-NE exhibited a stronger cytotoxicity and decreased ΔΨ. Pharmacokinetic profiles of I.V. α-TOS-NE group, I.P. α-TOS-NE group, and I.P. free α-TOS group (7% DMSO/93% PEG) were drawn. First of all, nanoemultion (NE) enables the I.V. injection of α-TOS, make it possible to be an I.V. preparation. Second, compare to the I.P. free α-TOS group, I.P. α-TOS-NE group had a higher bioavailability. Thus, NE improved the strong anti-cancer efficacy of α-TOS while increasing its in vivo bioavailability in rats. In conclusion, our laboratory-made NE was a safe drug delivery system for clinical trials and could be a promising formulation for α-TOS by I.V administration.
    [Abstract] [Full Text] [Related] [New Search]