These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Biochemical and Spectroscopic Characterization of the Non-Heme Fe(II)- and 2-Oxoglutarate-Dependent Ethylene-Forming Enzyme from Pseudomonas syringae pv. phaseolicola PK2. Author: Martinez S, Hausinger RP. Journal: Biochemistry; 2016 Nov 01; 55(43):5989-5999. PubMed ID: 27749027. Abstract: The ethylene-forming enzyme (EFE) from Pseudomonas syringae pv. phaseolicola PK2 is a member of the mononuclear non-heme Fe(II)- and 2-oxoglutarate (2OG)-dependent oxygenase superfamily. This enzyme is reported to simultaneously catalyze the conversion of 2OG into ethylene and three CO2 molecules and the Cδ hydroxylation of l-arginine (l-Arg) while oxidatively decarboxylating 2OG to form succinate and carbon dioxide. A new plasmid construct for expression in recombinant Escherichia coli cells allowed for the purification of large amounts of EFE with activity greater than that previously recorded. A variety of assays were used to quantify and confirm the identity of the proposed products, including the first experimental demonstration of l-Δ1-pyrroline-5-carboxylate and guanidine derived from 5-hydroxyarginine. Selected l-Arg derivatives could induce ethylene formation without undergoing hydroxylation, demonstrating that ethylene production and l-Arg hydroxylation activities are not linked. Similarly, EFE utilizes the alternative α-keto acid 2-oxoadipate as a cosubstrate (forming glutaric acid) during the hydroxylation of l-Arg, with this reaction unlinked from ethylene formation. Kinetic constants were determined for both ethylene formation and l-Arg hydroxylation reactions. Anaerobic UV-visible difference spectra were used to monitor the binding of Fe(II) and substrates to the enzyme. On the basis of our results and what is generally known about EFE and Fe(II)- and 2OG-dependent oxygenases, an updated model for the reaction mechanism is presented.[Abstract] [Full Text] [Related] [New Search]