These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Phenolic resin-derived activated carbon-supported divalent metal as efficient adsorbents (M-C, M=Zn, Ni, or Cu) for dibenzothiophene removal. Author: He C, Men G, Xu B, Cui J, Zhao J. Journal: Environ Sci Pollut Res Int; 2017 Jan; 24(1):782-794. PubMed ID: 27752957. Abstract: The adsorption process and mechanism of dibenzothiophene (DBT) over metal-loaded phenolic resin-derived activated carbon (PR-AC) were firstly reported in this work. The metal component (Zn, Ni, or Cu) was respectively introduced to PR-AC support via an impregnation method. The effects of adsorbent component, initial DBT concentration, liquid hourly space velocity (LHSV), adsorption time, and adsorption temperature on the adsorption capacity of the adsorbents were systematically investigated. Furthermore, the adsorption mechanism was discussed by analyzing the properties of adsorption product and saturated adsorbent as well as adsorption kinetics. Experimental results indicate that the PR-AC-loaded metal adsorbents, especially with Zn, present much higher DBT adsorption capability than that of pure PR-AC support. The DBT removal rate over PR-AC-loaded Zn (Zn2+ = 0.2 mol L-1) reaches 89.14 %, which is almost twice higher than that of pure PR-AC (45.6 %). This is due to the π-complexation between DBT and metal ions (dominating factor) and the weakening of the local hard acid sites over PR-AC. The multi-factor orthogonal experiment shows that the DBT removal rate over PR-AC-loaded Zn sample achieved 92.36 % in optimum conditions.[Abstract] [Full Text] [Related] [New Search]