These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Preferential coding of eye/hand motor actions in the human ventral occipito-temporal cortex. Author: Tosoni A, Guidotti R, Del Gratta C, Committeri G, Sestieri C. Journal: Neuropsychologia; 2016 Dec; 93(Pt A):116-127. PubMed ID: 27756696. Abstract: The human ventral occipito-temporal cortex (OTC) contains areas specialized for particular perceptual/semantic categories, such as faces (fusiform face area, FFA) and places (parahippocampal place area, PPA). This organization has been interpreted as reflecting the visual structure of the world, i.e. perceptual similarity and/or eccentricity biases. However, recent functional magnetic resonance imaging (fMRI) studies have shown not only that regions of the OTC are modulated by non-visual, action-related object properties but also by motor planning and execution, although the functional role and specificity of this motor-related activity are still unclear. Here, through a reanalysis of previously published data, we tested whether the selectivity for perceptual/semantic categories in the OTC corresponds to a preference for particular motor actions. The results demonstrate for the first time that face- and place-selective regions of the OTC exhibit preferential BOLD response to the execution of hand pointing and saccadic eye movements, respectively. Moreover, multivariate analyses provide novel evidence for the consistency across neural representations of stimulus category and movement effector in OTC. According to a 'spatial hypothesis', this pattern of results originates from the match between the region eccentricity bias and the typical action space of the motor effectors. Alternatively, the double dissociation may be caused by the different effect produced by hand vs. eye movements on regions coding for body representation. Overall, the present findings offer novel insights on the coupling between visual and motor cortical representations.[Abstract] [Full Text] [Related] [New Search]