These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Products of in Situ Corrosion of Depleted Uranium Ammunition in Bosnia and Herzegovina Soils. Author: Wang Y, von Gunten K, Bartova B, Meisser N, Astner M, Burger M, Bernier-Latmani R. Journal: Environ Sci Technol; 2016 Nov 15; 50(22):12266-12274. PubMed ID: 27768274. Abstract: Hundreds of tons of depleted uranium (DU) ammunition were used in previous armed conflicts in Iraq, Bosnia and Herzegovina, and Serbia/Kosovo. The majority (>90%) of DU penetrators miss their target and, if left in the environment, corrode in these postconflict zones. Thus, the best way to understand the fate of bulk DU material in the environment is to characterize the corrosion products of intact DU penetrators under field conditions for extended periods of time. However, such studies are scarce. To fill this knowledge gap, we characterized corrosion products formed from two intact DU penetrators that remained in soils in Bosnia and Herzegovina for over seven years. We used a combination of X-ray powder diffraction, electron microscopy, and X-ray absorption spectroscopy. The results show that metaschoepite (UO3(H2O)2) was a main component of the two DU corrosion products. Moreover, studtite ((UO2)O2(H2O)2·2(H2O)) and becquerelite (Ca(UO2)6O4(OH)6·8(H2O)) were also identified in the corrosion products. Their formation through transformation of metaschoepite was a result of the geochemical conditions under which the penetrators corroded. Moreover, we propose that the transformation of metaschoepite to becquerelite or studtite in the DU corrosion products would decrease the potential for mobilization of U from corroded DU penetrators exposed to similar environments in postconflict areas.[Abstract] [Full Text] [Related] [New Search]