These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A minicircuitry of microRNA-9-1 and RUNX1-RUNX1T1 contributes to leukemogenesis in t(8;21) acute myeloid leukemia. Author: Fu L, Shi J, Liu A, Zhou L, Jiang M, Fu H, Xu K, Li D, Deng A, Zhang Q, Pang Y, Guo Y, Hu K, Zhou J, Wang Y, Huang W, Jing Y, Dou L, Wang L, Xu K, Ke X, Nervi C, Li Y, Yu L. Journal: Int J Cancer; 2017 Feb 01; 140(3):653-661. PubMed ID: 27770540. Abstract: MicroRNA-9-1(miR-9-1) plays an important role in the mechanism that regulates the lineage fate of differentiating hematopoietic cells. Recent studies have shown that miR-9-1 is downregulated in t (8; 21) AML. However, the pathogenic mechanisms underlying miR-9-1 downregulation and the RUNX1-RUNX1T1 fusion protein, generated from the translocation of t (8; 21) in AML, remain unclear. RUNX1-RUNX1T1 can induce leukemogenesis through resides in and functions as a stable RUNX1-RUNX1T1-containing transcription factor complex. In this study, we demonstrate that miR-9-1 expression increases significantly after the treatment of RUNX1-RUNX1T1 (+) AML cell lines with decitabine (a DNMT inhibitor) and trichostatin A (an HDAC inhibitor). In addition, we show that RUNX1-RUNX1T1 triggers the heterochromatic silencing of miR-9-1 by binding to RUNX1-binding sites in the promoter region of miR-9-1 and recruiting chromatin-remodeling enzymes, DNMTs, and HDACs, contributing to hypermethylation of miR-9-1 in t (8; 21) AML. Furthermore, because RUNX1, RUNX1T1, and RUNX1-RUNX1T1 are all regulated by miR-9-1, the silencing of miR-9-1 enhances the oncogenic activity of these genes. Besides, overexpression of miR-9-1 induces differentiation and inhibits proliferation in t (8; 21) AML cell lines. In conclusion, our results indicate a feedback circuitry involving miR-9-1 and RUNX1-RUNX1T1, contributing to leukemogenesis in RUNX1-RUNX1T1 (+) AML cell lines.[Abstract] [Full Text] [Related] [New Search]